Tips for wikis and social bookmarks
1Overview

2Version-control common vocabulary

4Wiki hosting services and farms

4Wiki software: Perhaps use MediaWiki

4Get an IP license for the wiki

5Including social bookmarks

5Stating your own wiki

Overview

A wiki is a website that anyone with access can edit. Everyone is smarter than anyone alone, and as such, a wiki is the sum of a community’s collaborative arguments. The members negotiate with each other on correctness, meaning, relevance, and more, and then facts are checked and bias and emotion are weeded out in order to reach a neutral point of view for each article. The articles themselves are the residue, the last thing anyone declined to argue about. Your edit shows up the minute it is made, but it is still subject to future review and revision.
Behind each “article” page is a “talk” page where users can discuss the article and resolve disagreements. This is a good place for instructions on resolving conflicts. A third tab shows the article’s revision history: the time-stamp of every edit, the editor or IP address behind that edit, a brief description of that edit, and links to the state of the page before and after the edit.

Reputations matter. The number of edits you make raises you to a higher level of trust. Users who catch others’ misdeeds are praised, and abusers are abused. Thus, users are incentivized to do the best they can with each entry. This praise/shame economy within a wiki is much more effective than formal rules that deal with specific conflicts. Users can also publicly report their satisfaction with each other, which creates a positive shadow of the future over both parties, giving each an incentive to maintain or improve their standing on the site.

Formal rules are still needed though. No direct enforcement is needed, but users can periodically invoke them when they are arguing about the content of an article.

Despite vandalism, the wiki will get better, on average, over time. If even only a few people care about a wiki, it becomes hard to harm it. When enough people care and have both the will and the tools to quickly defend the article, most vandals will get demoralized. In the worst-case scenario, the administrator can lock a page until emotions have cooled or revert to saved drafts.
Revision control is critical for letting editors track each other's edits, correct mistakes, and defend against vandalism and spam. Changes are identified by a number or letter code, termed the "revision number", "revision level", or simply "revision." For example, an initial set is "revision 1." The first change makes the resulting set "revision 2," and so on. Each revision lists a timestamp and the user(s) making the change. Revisions can be compared, restored, and with some types of files, merged. A copy outside revision control is a "working copy".

Revision control systems are often centralized in a single repository, but in a distributed revision control, no single repository is authoritative, and data can be checked out and checked into any repository. When checking into a different repository, this is interpreted as a merge or patch. In the centralized model if two users try to change the same file simultaneously, they may end up overwriting each other's work. To solve this, there is file locking and version merging.

In file locking, only one user at a time has write access to the "repository" copy, Once that person "checks out" a file, others can read it but can’t change it until the first user "checks in" – or returns - the updated version (or cancels the checkout). File locking protects against difficult merge conflicts when a user is making radical changes to many sections of a large file or files. However, if the files are left locked for too long, others might try to bypass the revision control software and change the files however they can, leading to greater problems. Merging two files is usually possible only if the data structure is simple, as in text files. For more, see
http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/Wikipedia:Revision_control

https://en.wikipedia.org/wiki/Comparison_of_version_control_software

Version-control common vocabulary

Baseline (or trunk): An approved revision of a document or source file from which subsequent changes can be made.
Branch: A set of files under version control may be branched or forked at a point in time so that, from that time forward, two copies of those files may develop at different speeds or in different ways independently of each other.

Change list: This identifies the set of changes made by a user.

Checkout: To check out (or co) is to create a local working copy from the repository. A user may specify a specific revision or obtain the latest. Checkout also describes the working copy.

Clone: Creating a repository with the revisions from another repository. This is the same as pushing or pulling into an empty (newly initialized) repository. As a noun, two repositories can be said to be clones if they are kept synchronized, and contain the same revisions.

Commit: To commit (check in, ci or, more rarely, install, submit or record) is to write or merge the changes made in the working copy back to the repository. The terms 'commit' and 'checkin' can also be used as nouns to describe the new revision that is created as a result of committing.

Delta compression: Retains only the differences between successive versions of files. This allows for more efficient storage of many different versions of files.

Distributed revision control: Rather than a single, central repository on which clients synchronize, each peer's working copy of the codebase is a repository. Synchronization is done by exchanging patches (change-sets) from peer to peer. Differences from a centralized system:

· No canonical, reference copy of the codebase exists by default; only working copies.

· Common operations (such as commits, viewing history, and reverting changes) are fast, because there is no need to communicate with a central server. Rather, communication is only necessary when pushing or pulling changes to or from other peers.

· Each working copy effectively functions as a remote backup of the codebase and of its change-history, providing inherent protection against data loss.

Dynamic stream: A stream in which some or all file versions mirror the parent stream's versions.

Export: Obtaining files from the repository. It is similar to checking out except that it creates a clean directory tree without the version-control metadata used in a working copy. This is often used prior to publishing the contents, for example.

Fetch: See pull.

Forward integration: Merging changes made in the main trunk into a development (feature or team) branch.

Head (or tip): The most recent commit, either to the trunk or to a branch. The trunk and each branch have their own head, though HEAD is sometimes loosely used to refer to the trunk.

Import: copying a local directory tree that is not a working copy into the repository for the first time.

Initialize: to create a new, empty repository.

Interleaved deltas: Saving the history of text-based files more efficiently than Delta compression.

Mainline: Similar to trunk, but there can be a mainline for each branch.

Merge (or integration): Two sets of changes are applied to a file or set of files. Some sample scenarios are as follows:

· A user, working on a set of files, updates or syncs their working copy with changes made, and checked into the repository, by other users.
· A user tries to check in files that have been updated by others since the files were checked out, and the revision control software automatically merges the files (typically, after prompting the user if it should proceed with the automatic merge, and in some cases only doing so if the merge can be clearly and reasonably resolved).
· A branch is created, the code in the files is independently edited, and the updated branch is later incorporated into a single, unified trunk.
· A set of files is branched, a problem that existed before the branching is fixed in one branch, and the fix is then merged into the other branch. (This type of selective merge is sometimes known as a cherry pick to distinguish it from the complete merge in the previous case.)

Promote: The act of copying file content from a less controlled location into a more controlled location, for example, from a user's workspace into a repository, or from a stream to its parent.

Pull, push: Copy revisions from one repository into another. Pull is initiated by the receiving repository, while push is initiated by the source. Fetch is sometimes used as a synonym for pull, or to mean a pull followed by an update.

Repository (or depot): Where files' current and historical data are stored, often on a server.
Reserved edit: Explicitly locking a file for exclusive write access.

Reverse integration: Merging different branches into the main trunk of the versioning system.

Share: Making one file or folder available in multiple branches at the same time. When a shared file is changed in one branch, it is changed in other branches.

Stream: A container for branched files that has a known relationship to other such containers.
Streams form a hierarchy; each stream can inherit various properties (like versions, namespace, workflow rules, subscribers, etc.) from its parent stream.

Tag: A tag or label refers to an important snapshot in time, consistent across many files, that has been tagged with a meaningful name or revision number.
Update: An update (or sync) merges changes made in the repository (by other people, for example) into the local working copy. Synonymous with checkout in revision control systems that require each repository to have exactly one working copy (common in distributed systems).
Working copy: The working copy is the local copy of files from a repository, at a specific time or revision. All work done to the files in a repository is initially done on a working copy.
Wiki hosting services and farms
A wiki farm installs the core wiki codes, maintains the servers, and creates space on the servers for each individual wiki with the shared core code executing the functions of every wiki. Many wiki farms make money through ads, but often allow payment of a monthly fee as an alternative to accepting ads. For more, see http://en.wikipedia.org/wiki/Comparison_of_wiki_farms and https://en.wikipedia.org/wiki/Comparison_of_wiki_hosting_services.

Wiki software: Perhaps use MediaWiki

MediaWiki (www.mediawiki.org) is a free and open-source wiki software that powers wiki websites such as Wikipedia. It can handle terabytes of content and hundreds of thousands of hits per second. It also lets one link to specific versions of articles, which lets peer reviewers analyze them and provide links to the trusted version. A commercial alternative to MediaWiki is Confluence, which has an app inside called Excellentable that allows users to collaborate in real-time. For comparisons between MediaWiki, Confluence, and other wiki software, see https://www.wikimatrix.org and http://en.wikipedia.org/wiki/Comparison_of_wiki_software.

Get an IP license for the wiki
IP licenses assure contributors that their work will stay freely available, motivating them further.

http://en.wikipedia.org/wiki/Creative_Commons_Attribution_Share-Alike_License
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/GFDL
Including social bookmarks

Look for ease of gathering the bookmarks, the researching features (capturing, annotating, highlighting, tagging, and so on), cataloging and retrieval capabilities, and the ease with which you can share, follow others' activities, and collaborate to compile results. https://en.wikipedia.org/wiki/List_of_social_bookmarking_websites

Stating your own wiki

Start with a small-scale test or pilot program to ensure that you choose the right software and strategy in a controlled manner. Gather two to five people to build the wiki structure and work through various house rules, such as your organization’s internal guide to content, conduct, and community. When your initial users are satisfied with the results, invite more contributors.

1. Keep it compact. Collaboration is more effective in smaller, intimate groups.
2. Choose participants carefully. Decide whether to advertise or hand-pick them.
3. Define and post guidelines for content and conduct, and make these into wikis themselves.
4. Have a profile page for each of the members, where they can blog if they want to.
5. Never have an empty page. Use a consistent scaffold pattern, like a template, to guide users.
6. Make it a magnet. Share wiki links when anyone asks for information that is on your wiki.
7. Be firm and think long-term. Keep advocating your choice to collaborate this way.

8. Get an appropriate intellectual-property license.

1

